翻訳と辞書
Words near each other
・ I. M. Jayarama Shetty
・ I. M. Pei
・ I. M. R. A. Iriyagolla
・ I. M. Rașcu
・ I. M. Rubinow
・ I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry
・ I. M. Singer
・ I. M. Skaugen
・ I. M. Vijayan
・ I. maculata
・ I. Madison Bentley
・ I. Magnin
・ I. Magnin Building
・ I. Marlene King
・ I. Michael Lerner
I. Michael Ross
・ I. minutus
・ I. montana
・ I. N. C. Aniebo
・ I. N. Murthy
・ I. Nelson Rose
・ I. Newton Baker
・ I. orientalis
・ I. P. Durfee
・ I. P. Fetterman
・ I. P. Gautam
・ I. P. Pavlova
・ I. P. Sharp Associates
・ I. Patricia Henry
・ I. Peltz


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

I. Michael Ross : ウィキペディア英語版
I. Michael Ross
Isaac Michael Ross is a Navy Professor and Director of the Control and Optimization Laboratories at the Naval Postgraduate School in Monterey, CA. He has published papers in pseudospectral optimal control theory,〔I. M. Ross and F. Fahroo, A Pseudospectral Transformation of the Covectors of Optimal Control Systems, Proceedings of the First IFAC Symposium on System Structure and Control, Prague, Czech Republic, 29–31 August 2001.〕〔I. M. Ross and F. Fahroo, Legendre Pseudospectral Approximations of Optimal Control Problems, ''Lecture Notes in Control and Information Sciences'', Vol. 295, Springer-Verlag, 2003.〕〔
I. M. Ross and F. Fahroo, Discrete Verification of Necessary Conditions for Switched Nonlinear Optimal Control Systems, Proceedings of the American Control Conference, Invited Paper, June 2004, Boston, MA.〕
energy-sink theory, the optimization and deflection of near-Earth asteroids and comets,
robotics,〔M. A. Hurni, P. Sekhavat, and I. M. Ross, "An Info-Centric Trajectory Planner for Unmanned Ground Vehicles," Dynamics of Information Systems: Theory and Applications, Springer Optimization and its Applications, 2010, pp. 213–232.〕 attitude dynamics and control, real-time optimal control and a textbook on optimal control.〔I. M. Ross, ''A Primer on Pontryagin’s Principle in Optimal Control,'' Second Edition, Collegiate Publishers, San Francisco, CA, 2015.〕 Ross' π lemma, Ross' time constant, the Ross–Fahroo lemma, and the Ross–Fahroo pseudospectral method are all named after him.〔B. S. Mordukhovich, Variational Analysis and Generalized
Differentiation, I: Basic Theory, Vol. 330 of Grundlehren der
Mathematischen Wissenschaften (Principles of
Mathematical Sciences
) Series, Springer, Berlin, 2005.〕〔W. Kang, "Rate of Convergence for the Legendre Pseudospectral Optimal Control of Feedback Linearizable Systems", ''Journal of Control Theory and Application'', Vol.8, No.4, 2010. pp.391-405.〕〔N. Bedrossian, M. Karpenko, and S. Bhatt,
"Overclock My Satellite: Sophisticated Algorithms Boost Satellite Performance on the Cheap",
''IEEE Spectrum'', November 2012.〕
==Theoretical contributions==
Although Ross has made contributions to energy-sink theory, attitude dynamics and control and planetary defense, he is best known〔〔〔〔〔P. Williams, "Application of Pseudospectral Methods for Receding
Horizon Control," ''Journal of Guidance, Control and Dynamics'', Vol.27,
No.2, pp.310-314, 2004.〕 for work on pseudospectral optimal control. In 2001, Ross and Fahroo announced〔 the covector mapping principle, first, as a general result in pseudospectral optimal control, and later〔 as a result in optimal control. This principle was based on their result showing that dualization and discretization are not necessarily commutative operations (known〔 as the Ross–Fahroo lemma) and that certain steps must be taken to promote commutation. When discretization is commutative with dualization, then, under appropriate conditions, Pontryagin's minimum principle emerges as a consequence of the convergence of the discretization.
Together with F. Fahroo, W. Kang and Q. Gong, Ross proved a series of results on the convergence of pseudospectral discretizations of optimal control problems.〔W. Kang, I. M. Ross, Q. Gong, Pseudospectral optimal control and its convergence theorems, Analysis and Design of Nonlinear Control Systems, Springer, pp. 109–124, 2008.〕 Ross and his coworkers showed that the Legendre and Chebyshev pseudospectral discretizations converge to an optimal solution of a problem under the mild condition of boundedness of variations.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「I. Michael Ross」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.